The Open Problems Project

Next: Problem 17: Visibility Graph Recognition

Previous: Problem 15: Output-sensitive Convex Hull in \R^d

Problem 16: Simple Polygonalizations

Statement

Can the number of simple polygonalizations of a set of n points in the plane be computed in polynomial time? A simple polygonalization is a simple polygon whose vertices are the points.

Origin

Uncertain, pending investigation.

Status/Conjectures

Open.

Partial and Related Results

Certain special cases are known (e.g., for computing the number of monotone simple polygonalizations [ZSSM96]), but the general problem remains open. The problem is closely related to that of generating a “random” instance of a simple polygon on a given set of vertices, with each instance being generated with probability 1/k, where k is the total number of simple polygonalizations. Heuristic methods are known and implemented [AH96].

See [CHUZ01] and [HMO+09] for related topics and references to relevant papers.

Appearances

[MO01]

Categories

polygons; point sets

Entry Revision History

J. O’Rourke, 2 Aug. 2001; 1 Jan. 2003.

Bibliography

[AH96]

Thomas Auer and Martin Held. Heuristics for the generation of random polygons. In Proc. 8th Canad. Conf. Comput. Geom., pages 38–43, 1996.

[CHUZ01]

Jurek Czyzowicz, Ferran Hurtado, Jorge Urrutia, and Najib Zaguia. On polygons enclosing point sets. Geombinatorics, XI:21–28, 2001.

[HMO+09]

Ferran Hurtado, C. Merino, D. Oliveros, T. Sakai, Jorge Urrutia, and I. Ventura. On polygons enclosing point sets II. Graphs Combinatorics, 25(3):327–329, 2009.

[MO01]

J. S. B. Mitchell and Joseph O’Rourke. Computational geometry column 42. Internat. J. Comput. Geom. Appl., 11(5):573–582, 2001. Also in SIGACT News 32(3):63-72 (2001), Issue 120.

[ZSSM96]

Chong Zhu, Gopalakrishnan Sundaram, Jack Snoeyink, and Joseph S. B. Mitchell. Generating random polygons with given vertices. Comput. Geom. Theory Appl., 6:277–290, 1996.